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概要
Mackey–Glass 方程式にノイズを加えると, 特定のノイズ強度で系の周期応答が最大化される
確率共鳴という現象が生じる. このような確率論的な系においてはこれまで主に確率過程論的な
解析がなされてきたが, 近年ランダム力学系理論の発展によってその動力学構造を議論できるよ
うになってきた. 本稿では, ランダム力学系理論の概念を導入することで, 確率共鳴の動力学構造
について調べる. その結果, 共鳴時に最大リアプノフ指数が負となる安定確率共鳴に加えて, 最大
リアプノフ指数が正となるカオス的確率共鳴が生じることが分かった. またカオス的確率共鳴は
Duffing方程式や不足減衰 FitzHugh–Nagumo方程式においても観察され, 幅広い非線形系で観
察される普遍性をもつ現象であることが分かった.

1 はじめに
非線形系においては微小ノイズが系の性質を根本的に変えてしまうことがあり, 雑音誘起現象

と呼ばれている. 雑音誘起現象の典型例として, ノイズが秩序構造を強化する現象である確率共鳴
(stochastic resonance)[1] があげられる. このような現象は古くから研究されてきたが, 従来では確
率論的, 確率過程論的な解析が中心であった. 近年ランダム力学系理論が発展したことにより, 確率
論的な系においてもアトラクターや分岐, 安定性といった力学系理論の概念が導入され, その動力学
構造を解析できるようになった. 本稿では確率共鳴について概説し, カオス的な遅延微分方程式であ
るMackey-Glass方程式における確率共鳴について考察する. 特に, ランダム力学系理論のランダム
プルバックアトラクターやランダムリアプノフ指数などの概念を導入することで, カオスや高次元カ
オスが確率共鳴にどのような影響を与えるかを議論する.

2 背景
2.1 確率共鳴
確率共鳴は, 特定のノイズ強度で系の周期応答が最大化されるという現象である. 確率共鳴が生じ

る典型的なモデル [2]として二重井戸型ポテンシャルの勾配系に周期外力とノイズを加えた

dx =

[
x(t)− x3(t) + ε cos(

2π

T
t)

]
dt+ σdWt (1)
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を考える. ただし εは外力振幅, T は外力周期, σ はノイズ強度, Wt はウィーナー過程を表す. また,

ポテンシャルの 2重井戸型構造を壊さない程度に外力振幅は十分小さいとし, 外力周期は系が緩和す
る時間に対して十分長いと仮定する. この系ではノイズによってポテンシャルの谷底の間の遷移が生
じる. 特に最適なノイズ強度において、ポテンシャルの谷底の間の遷移ダイナミクスのタイムスケー
ルが周期外力の周期 T に同調する現象が観察される (図 1). このようなノイズによるタイムスケール
マッチングが確率共鳴である.

図 1 式 (1) の各ノイズ強度におけるサンプルパス (黒線). 補助線として周期 T の振動
cos(2πt/T ) を重ね書きした (赤線). パラメーターは ε = 0.1, T = 200 である. σ = 0.45

のとき確率共鳴が生じている.

サンプルパスのパワースペクトルを調べると, 周期外力の振幅に対応する振動数 f = f∗ にピーク
を持ち*1, このピークの高さがノイズ強度によって変化する (図 2). 実際にこの振動数に対応するパ
ワーをノイズの関数としてプロットすると, あるノイズ強度において最大値を取る. 本稿では, このよ
うに共鳴振動数のパワーが特定のノイズ強度で最大値をとるとき確率共鳴が起きているとし, また最
大パワーを与えるノイズ強度 σ∗ を共鳴点と呼ぶ.

図 2 (a) 式 (1)の σ = 0(青線), σ = 0.45(赤線), σ = 0.7(黒線)におけるパワースペクトル. (b)

共鳴振動数 f∗ = 0.005 におけるパワーをノイズ強度 σ の関数としてプロットした図. 共鳴点は
σ = σ∗ = 0.45である. その他のパラメータは図 1と同様である.

*1 以降はこのように最大振幅を与える振動数を, 共鳴振動数と呼ぶ.



上記のような現象は２重井戸型ポテンシャルと周期外力とノイズから成る系において広く生じ, 本
稿ではこの現象を古典的な確率共鳴と呼ぶ. 周期外力が無い系においてもノイズによるタイムスケー
ルマッチングが観察されておりコヒーレンス共鳴 (coherence resonance)[3] と呼ばれている. また,

時間遅延系においてもノイズと遅延フィードバックの相互作用によってタイムスケールマッチングが
観察されており, 遅延確率共鳴 (delayed stochastic resonance)[4, 5] と呼ばれている. これらは全て
の性質を共有しているわけでは無いが, いずれもノイズによるタイムスケールマッチングという意味
で確率共鳴の現象クラスに属している. 本稿ではこれらを総称して確率共鳴と呼ぶことする.

2.2 Mackey–Glass方程式
非線形遅延微分方程式の代表例としてMackey-Glass方程式 (MG)[6]

ẋ =
ax(t− τ)

1 + xc(t− τ)
− bx(t) (2)

を考える. ただし, τ は時間遅延, aはフィードバック強度, bは減衰率, cはフィードバックの非線形
性を表すパラメータである. MGは白血球の生成を表す生理学のモデルとして導入され, 単純な形式
にも関わらずカオスを示す. 特に, 遅延 τ が大きいとき複数の正のリアプノフ指数を持ち, 高次元カ
オスを示すことが知られている. 図 3 (a)は, 決定論MGのフィードバック強度 aについての分岐図
である. a = bにおいてピッチフォーク分岐が生じ, 原点に対して対称な 2つの固定点が生じる. さら
に aを大きくしていくと, それぞれの固定点がリミットサイクル, カオス, 高次元カオスへと順に分岐
していく. 2つのアトラクターは原点に対して対称であり, リミットサイクルへの分岐は a ≃ 0.125,

カオスへの分岐は a ≃ 0.138, 高次元カオスへの分岐は a ≃ 0.144で生じる.

図 3 (a) 決定論MG (2)のフィードバック強度 aに関する分岐図. 各 aにおいてアトラクターと
ポアンカレ断面 dx/dt = 0の交点をプロットすることで作成した. ピッチフォーク分岐後 (a > b)

は原点に対して対称なアトラクターが存在するが, 正の領域のアトラクターのみを表示した. (b)

決定論MG (2)において最大および 2番目のリアプノフ指数 λ1, λ2 を aの関数としてプロットし
た図. a1 = 0.14を非線形性が比較的小さい領域の代表値とし, a2 = 0.30を非線形性が比較的強
い領域の代表値とする. a = a1, a2 において, 決定論アトラクターはそれぞれ低次元カオスと高次
元カオスとなる. その他のパラメータは b = 0.1, c = 10, τ = 90である.



3 Mackey–Glass方程式におけるカオス的確率共鳴
3.1 確率Mackey–Glass方程式における確率共鳴
MGにノイズ項を加えた確率Mackey-Glass方程式

dx =

[
ax(t− τ)

1 + xc(t− τ)
− bx(t)

]
dt+ σdWt (3)

を考える. ただし, σ はノイズ強度, Wt はウィーナー過程を表す. ここではパラメータ bと cは標準
的な値 b = 0.1, c = 10に固定し, フィードバックの強度 aとノイズ強度 σ をコントロールパラメー
タとする. 時間遅延 τ は応答時間 1/bより十分大きい値とし, 特に言及がない限り τ = 90とする. 以
降の数値計算は, とくに言及しない限り, 刻み幅 ∆t = 0.01のオイラー・丸山法を用いて行う.

決定論 MG がピッチフォーク分岐後の双安定になっているパラメータ領域 (a > b) では, ノイズ
は決定論アトラクターの間の遷移を引き起こす. さらに, 最適ノイズ強度において遷移ダイナミク
スの周期性が最大化されるという確率共鳴が生じることが分かった. この確率共鳴は 2 つの決定
論アトラクターの種類に関わらず観察された. 図 4 は決定論アトラクターが低次元カオスの場合
(a = a1 = 0.14), 図 5は決定論アトラクターが高次元カオスの場合 (a = a2 = 0.30)の確率共鳴を表
している. いずれの場合もノイズ存在下で共鳴振動数 f∗

n ≃ n/τ (n = 1, 2, · · · )の振動が強化されて
いることが分かる (図 4, 5 (a)). 最も支配的な共鳴振動数 f∗

1 のパワーをノイズの関数としてプロッ
トすると, あるノイズ強度 σ = σ∗ で最大値を取り, これは確率共鳴が生じていることを示している
(図 4, 5 (b)).

3.2 安定な確率共鳴と不安定な確率共鳴
カオスが確率共鳴に及ぼす影響を調べるため, ノイズ存在下のランダムリアプノフ指数を計算した.

特に代表例として決定論アトラクターが低次元カオスの場合 (a = a1 = 0.14)と高次元カオスの場合
(a = a2 = 0.30)を調べた. いずれの場合も確率共鳴が生じるが, 最大リアプノフ指数の定性的な挙動
は異なり, 共鳴点におけるその符号によって 2種類の確率共鳴に分類できる. ここでは, 共鳴点にお
いて最大リアプノフ指数が負となる確率共鳴を安定確率共鳴 (図 4), 正となる確率共鳴をカオス的確
率共鳴 (図 5)と呼ぶこととする.

a = a1 = 0.14のとき決定論アトラクターは低次元カオスとなり, 最適ノイズで生じる共鳴は安定
確率共鳴となる. ノイズ強度を上げていくと λ1 はまず減少していき σ = σ0 において負となる. これ
はカオス的アトラクターがノイズによってランダム点アトラクターに遷移したことを意味する. さら
にノイズ強度を大きくすると, λ1 は共鳴点付近で極大値を取る. λ1 の極大値を与えるノイズ強度と
共鳴点 σ∗ はほぼ一致しており, これは系が最も中立的になったとき（リアプノフ指数が最も 0に近
付いたとき）に共鳴していることを意味する. 十分大きな σ においては, λ1 は再び減少する. 共鳴点
でリアプノフ指数が負であると, 近傍にある 2本の軌道が平均的には近づき最終的にランダム点アト
ラクターとなる (図 4 (c)). したがって安定確率共鳴はランダム点アトラクターが概周期的に振動す
る現象といえ, これは古典的な確率共鳴と実効的に同様の現象である.



図 4 確率MG (3) における安定確率共鳴 (a = 0.14). (a) 決定論 σ = 0の場合（青線）と共鳴
点 σ = σ∗ = 0.162 の場合（黒線）のパワースペクトル. (b) 主共鳴振動数 f∗

1 におけるパワー
（黒点）と最大リアプノフ指数（赤点）をノイズ強度の関数としてプロットした図. (c) 共鳴点
σ = σ∗ = 0.162 におけるランダムプルバックアトラクター. 初期値の集合として [−1, 1]上に一
様分布する値 x0 を取る定数関数 ϕ(t) ≡ x0 t ∈ [−τ, 0] を 105 個用意し, プルバックタイムは
tp = 2× 104 とした.

a = a2 = 0.30のとき決定論アトラクターは高次元カオスとなり, 最適ノイズで生じる共鳴はカオ
ス的確率共鳴となる. ノイズ強度を上げていくと λ1 はまず増加し共鳴点付近で最大値をとる. さら
にノイズ強度を上げていくと, λ1 は減少していき, σ = σ0 でランダム点アトラクターとなる. 安定確
率共鳴の場合と異なる点は, 共鳴点 σ = σ∗ が λ1 の零点 σ = σ0 に先行することである. これにより,

共鳴点において高次元確率カオスと概周期的な共鳴振動が共存する. したがってカオス的確率共鳴は
確率カオスの特徴的周波数がノイズによって強化される現象といえる. 固定されたノイズ系列の下で
可能な全ての軌道の時刻 t における分布を ρt と表すと, カオス的確率共鳴では共鳴時にランダムス
トレンジアトラクター上の ρt が概周期的に振動する. このような分布の振動現象は統計的概周期性
(statistical periodicity)とも呼ばれ, 確率共鳴とは別の文脈で研究されてきた [7]. カオス的確率共鳴
の存在は確率共鳴と統計的概周期性の概念が重なっていることを表しており, 両者の関係の解析は今
後の課題である.

図 6は安定確率共鳴とカオス的確率共鳴が観察される領域を表す. 低次元カオスの場合 (a = a1)

に代表される安定確率共鳴は, ピッチフォーク分岐後であってもフィードバック強度が比較的小さい
領域 0.1 < a < 0.15で観察される. 一方で高次元カオスの場合 (a = a2)に代表されるカオス的確率
共鳴はフィードバック強度が比較的大きい領域 a > 0.25で観察されており, 決定論系の窓に対応す
るパラメータでも雑音誘起カオスを経てカオス化した後, 同様にカオス的確率共鳴が生じる.



図 5 確率MG (3)におけるカオス的確率共鳴 (a = 0.30). (a) 決定論 σ = 0の場合（青線）と共
鳴点 σ = σ∗ = 0.104の場合（黒線）のパワースペクトル. (b)主共鳴振動数 f∗

1 におけるパワー
（黒点）とリアプノフスペクトル（赤点）をノイズ強度の関数としてプロットした図. リアプノフ
スペクトルは大きいものから 6番目までをプロットした. (c) 共鳴点 σ = σ∗ = 0.104におけるラ
ンダムプルバックアトラクター. 初期値の集合として [−1, 1]上に一様分布する値 x0 を取る定数
関数 ϕ(t) ≡ x0 t ∈ [−τ, 0]を 1.0× 105 個用意し, プルバックタイムは tp = 2× 104 とした.

図 6 安定確率共鳴とカオス的確率共鳴が観察されるパラメータ領域. (a) σ = 0.15におけるラン
ダムプルバックアトラクターのフィードバック強度 aに関する分岐図. 各 aにおいて, ノイズ系列
とプルバックタイムを固定してランダムプルバックアトラクターのスナップショットを計算し, そ
の x(t)軸への射影を描画している. (b) リアプノフ指数 λ1, λ2 を aの関数としてプロットした図.



3.3 共鳴周期と不安定スパイラル構造
遅延確率共鳴は, アトラクター間の遷移が遅延時間 τ に同調する現象であると考えられてきた. 一

方で, Mackey–Glass方程式で観察された確率共鳴の共鳴周期 T := 1/f∗
1 は, 安定かカオス的かに依

らず遅延時間 τ より少し大きい値を取ることが分かった. 以下では, 原点の線形安定性解析に基づい
て, 共鳴周期の近似を T ≃ τ から T = τ(1 + ε)へと改良できることを示す. この結果は原点にある
不安定スパイラル構造が確率共鳴を引き起こしていることを示している.

図 7 カオス的確率共鳴の場合 (a = a2 = 0.30) の共鳴振動数と不安定スパイラル構造の関
係. (a) x = 0 における特性根 λn と x = ±x∗ における特性根 µn. λn と µn はいずれも無
限個存在するが, 実部の値が大きいものを表示した. (b) 決定論 σ = 0 の場合 (青線) と共鳴点
σ = σ∗ = 0.104の場合 (黒線)のパワースペクトル. (c) 相空間の (x(t), x(t− τ))平面への射影.

青線は 2 つの決定論アトラクターを赤線は原点付近からのトランジエント軌道を表している. ト
ランジエント軌道は初期関数を ϕ(t) = 0.01 sin(2πf∗

1 t) + 0.02 sin(2πf∗
2 t)とし, 原点から離れて

いく軌道を描いた. (d) 主共鳴振動数 f∗
1 を τ の関数としてプロットしたグラフ. 式 (5)の逆数で

与えられる理論値 (赤線)と, 数値計算結果 (黒点)がよく一致している. 点線は f∗
1 = 1/τ で与え

られる古典的な近似値であり, τ が大きい領域では数値計算結果とよく一致している.

ピッチフォーク分岐後 (a > b)の決定論MGは, 原点 x = 0と x = ±x∗, x∗ = (a−b
b )1/c に固定点

を持つ. それらの特性方程式は

χ+ b− ae−χτ = 0 (x = 0),

χ+ b− ( cb
2

a − (c− 1)b)e−χτ = 0 (x = ±x∗),



であり, 以下で与えられる無限個の特性根 χ = λn, µn を持つ:

λn = −b+ 1
τWn [aτ exp(bτ)] (x = 0),

µn = −b+ 1
τWn

[
( cb

2

a − (c− 1)b)τ exp(bτ)
]

(x = ±x∗),

ただし, Wn はランベルト W 関数の n 番目の分枝を表す. 特性根は線形モードの振動数 s2n :=
1
2π Im(λn), s2n+1 := 1

2π Im(µn) (n = 0, 1, · · · )は, ランベルトW関数の漸近展開 [8]を用いると,

s2n ≃ 2n
2τ

[
1− 1

bτ+ln(aτ)

]
(x = 0),

s2n+1 ≃ 2n+1
2τ

[
1− 1

bτ+ln(| cb2a −(c−1)b|τ)

]
(x = ±x∗),

(4)

と表せる. 偶数モード s2n は原点周りの不安定スパイラル構造を, 奇数モード s2n+1 はアトラクター
周りのスパイラル構造を特徴づけている. 図 7(a),(b) は, パワースペクトルのピークと s2m, s2m+1

の対応を示している. 共鳴時は, n番目の共鳴周期 f∗
n が偶数モード s2n によく一致していることが分

かる. したがって共鳴周期 T は以下で近似できる:

T ≃ 1

s2n
= τ(1 + ε), ε =

1

bτ + ln(aτ)− 1
. (5)

τ が非常に大きい場合は, これは古典的な近似 T ≃ τ となる. この結果は, ノイズによって原点の不
安定スパイラル構造を訪れる頻度が上がることにより確率共鳴が生じていることを示唆している.

4 カオス的確率共鳴の普遍性
カオス的確率共鳴はMackey–Glass方程式に特有の現象ではなく, 古典的な確率共鳴やコヒーレン

ス共鳴のモデルにおいても観察される. 古典的な確率共鳴の例として, 外力の無い Duffing方程式

dx = ydt

dy = (−γy + x− x3)dt (6)

を考える. ただし γ は減衰率である. 式 (6)の過減衰極限 (γ → ∞, t = γs, dy/dt → 0)で二重井戸
型ポテンシャルの勾配系が得られ, さらに周期外力とガウシアンノイズを加えると古典的な確率共鳴
が生じる [2]. 過減衰極限を取らず, 式 (6)に周期外力とガウシアンノイズを加えると

dx = ydt

dy =
[
−γy + x− x3 + ε cos(ωt)

]
dt+ σdWt, (7)

が得られる. ただし, σ はノイズ強度, Wt はウィーナー過程, εは外力振幅, ω は角速度を表す. この
系は確率 Duffing方程式と呼ばれる. この系の γ = 0.2, ε = 0.3, ω = 0.1, σ = 0.22においてカオス
的確率共鳴が観察される (図 8 (a)).

コヒーレンス共鳴の例として, 不足減衰 FitzHugh-Nagumo方程式

dx = zdt,

dy =
ε

γ
(x+ a)dt

dz = (x− x3

3
− y − γz)dt, (8)



を考える. ただし, εは変数 x, y のタイムスケールの比, aは興奮性の閾値, γ は減衰率を表す. 式 (8)

の過減衰極限 (γ → ∞, t = γs/ε, and dz/dt → 0)で FitzHugh–Nagumo 方程式が得られ, さらに
ガウシアンノイズを加えるとコヒーレンス共鳴が生じる [3]. 過減衰極限を取らず, 式 (8)にガウシア
ンノイズを加えると

dx = zdt,

dy =
ε

γ
(x+ a)dt+ σdWt

dz = (x− x3

3
− y − γz)dt, (9)

が得られる. ただし σ はノイズ強度, Wt はウィーナー過程を表す. この系の γ = 0.41, ε = 0.1,

a = 1.1, σ = 0.12においてカオス的確率共鳴が観察される (図 8 (b)).

図 8 (a) 確率 Duffing 方程式 (7) におけるカオス的確率共鳴 (γ = 0.2, ε = 0.3, ω = 0.1). 共
鳴振動数 f∗ = 0.0159 におけるパワー S(f∗)(黒点) と最大リアプノフ指数 λ1(赤点) をノイズ強
度の関数としてプロットした図. (b) ノイズを加えた不足減衰 FitzHugh-Nagumo 方程式 (9) に
おけるカオス的確率共鳴 (γ = 0.41, ε = 0.1, a = 1.1). 共鳴振動数 f∗ = 0.037におけるパワー
S(f∗)(黒点)と最大リアプノフ指数 λ1(赤点)をノイズ強度の関数としてプロットした図.

5 おわりに
ランダム力学系理論におけるランダムプルバックアトラクターやランダムリアプノフ指数などの概

念を導入することで, Mackey–Glass方程式において観察される確率共鳴の動力学構造について解析
した. その結果, 共鳴点でリアプノフ指数が負である安定確率共鳴に加えて, 共鳴点でリアプノフ指数
が正となるカオス的な確率共鳴が存在することが分かった. 安定確率共鳴では, 共鳴時に軌道が点ア
トラクターに収束し, 実効的に古典的な確率共鳴と同様の現象となる. 一方でカオス的確率共鳴では,

共鳴時に初期値鋭敏性を保ちながら特徴的周波数が強化され, 確率カオスと概周期的な共鳴振動が共
存する.

これまでに研究されてきた確率的非線形系における共鳴現象は, 古典的な確率共鳴, コヒーレンス
共鳴, 遅延確率共鳴に大別される. それぞれの特徴を以下の表 1にまとめた. いずれの場合もランダ
ムプルバックアトラクターの安定性によりさらに分類することができる. 安定確率共鳴は非線形性が
比較的小さく, ノイズによって軌道が同期している場合に観察される. 一方でカオス的確率共鳴は, 確



率カオスを伴うような非線形性が強い系において普遍性を持つ現象である. 系の特徴的周波数が増幅
するという意味では両者は同じクラスの現象であり, ランダム力学系理論により, 古典的な確率共鳴
の概念が確率カオスを含めた形で一般化されたといえる.

表 1 確率共鳴のクラス.

古典確率共鳴 コヒーレンス共鳴 遅延確率共鳴
力学系の例 Duffing方程式 FitzHugh–Nagumo方程式 Mackey–Glass方程式

状態空間の次元 3 (過減衰系の場合 2) 3 (過減衰系の場合 2) 無限次元
自励系 NO YES YES

多アトラクター系 YES NO YES

共鳴振動数 一定 ノイズ強度に依存 一定
ハーモニクス NO YES YES

安定確率共鳴 YES(過減衰系の場合) YES(過減衰系の場合)
YES(遅延フィードバック

が小さい場合)

カオス的確率共鳴 YES YES YES
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